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ABSTRACT

An examingtion of the theory underlying activity based travel forecasting models, and the classfication of
the differences among modding approaches provide a framework which is used to compare Six
important examples.

Three examples are utility-based econometric systems of equations predicting probabilities of decison
outcomes. Oneistrip-based, a second is tour-based, and the third represents an entire daily schedule,
Thefirg two are theoreticdly inferior but have been vaidated operationdly. The dally schedule system
integrates the sequence and timing of activities across tours but has been implemented only asa
prototype.

Hybrid smulations use sequentid decision rules to predict decison process outcomes. Each example
assumes the decisonmaker uses a specific method to smplify acomplex decison. The firg classfies
the dternativesinto a small choice set of distinct classes, the second uses a structured search for a
satisfactory schedule adjustment, and the third employs a sequentia schedule building process. They
have chdlenging data requirements, unvaidated search process assumptions and only partidly functiona
prototypes.
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INTRODUCTION
We present some fundamentals of activity based travel forecasting. If you want to

* become more familiar with the language of activity based modding,

» understand the concepts underlying the approach,

» compare the alternative approaches,

* or understand important examples, including how well they satisfy the most essentid system
requirements,

then this presentation isaimed at you.

WE I firgt look at the motivation for activity based forecasting. Then we' |l examine the concepts
underlying the methods. We I identify the basic characteristics of the various modeling gpproaches,
congdering the requirements the systems must satisfy, the characterigtics they have in common and the
fundamentd differences between them. Findly, we |l spend a consderable amount of time looking at
important examples. We' ve identified two classes of modd systems, which are econometric mode
systems and hybrid smulation sysems. We Il look at three examplesin each class, considering how
they work, and their particular strengths and weaknesses.

MOTIVATION

Stated smply, the motivation for activity based travel forecasting isthet travel decisions are activity
based.

Concerns about aggregate phenomena such as congestion, emissions and land use patterns lead
governments to consider policies aimed at controlling them. These include, for example, employer-
based commute programs, single occupant vehicle regulation, road pricing, multimodd fadlities and
trangt oriented land development. But these policies don't affect the aggregate phenomena directly.
Insteed, thy affect them indirectly through the behavior of individuas. Furthermore, individuas adjust
their behavior in complex ways, motivated by a desire to achieve their activity objectives. Thisideais
illustrated by an example in Figure 1. Thisfigure represents the daily activity and travel pattern of one
person who drove doneto work at 7:30 am., returned home at 4:40 p.m., and stopped to shop on the
way home. In response to an employer sponsored program which gave strong financia incentives to
commute by trangt, this person made the switch to trangit. This required them to begin their commute
earlier, a 7:00 am., in order to arrive at work on time. Because their preferred shopping destination
was't on the trangit path, they decided to come straight home after work, then drive aone to do their
shopping after arriving at home in the evening. This response was rooted in demand for activity, and
involved a complex adjusment in their entire day’ s pattern. In this case, a conventiona trip based
forecasting modd would probably fail to predict the compensating peak period auto trip induced by the
trangt incentive program. Forecasting models will only be able to accurately capture this kind of
response if they represent how people schedule their dally activities.



Figurel
Activity based policy responses involve complex behaviora
adjugments motivated by a desire to achieve activity objectives.
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A few gatigtics drawn from a survey of Boston arearesidentsin 1991 reved some of the complexity
and variety in people s activity and travel schedules. Looking firgt a the number of toursin the daly
activity pattern, Figure 2 shows that a substantia percentage of people stay home for the entire day, and
40% take 2 or more tours away from home during the day. The patterns vary dramaticdly across the
population. For example, adults in households with smdl children are much more likely to take 2 or
more tours. Among these, the patterns of males and femaes differ substantidly. Maesare lesslikely to
gay home dl day and females are more likely to take 3 or more tours.



Figure2
Number of toursin the daily activity pattern (Boston, 1991)
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In Table 1 we see that mode choice differs between primary and secondary toursin the day. Drive
adone and trangt dternatives drop in market share for secondary tours, with substantial increasesin
shared ride and walk aternatives.

Tablel
Modes of travel on primary and secondary tours

Mode Primary Tours  Secondary Tours
Drive done 56% 41%
Shared ride 15 30
wak 13 26
Trangt with walk access 10 2
Trangt with auto access 4 0
Bicyde 1 1
Totd 100 100

Looking at the complexity of the work commute tour in Figure 3, we see that 25% of the workers
conduct activities away from the workplace sometime in the middle of the workday, and another 39%
make stops for other activities on the way to or from work. Here again, the patterns vary within the
population. In households with smal children, males are more likely than femaesto travel directly to



and from work.

Figure3
Complexity of the work commute tour
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The didribution of trips by time of day, shown in Figure 4, reveds the bimoda didtribution of trips
associated with the morning and evening peak periods. Dividing these trips into four categories, it aso
shows aunimoda distribution for nonworker trips, with substantial amounts of travel occurring during
the peak periods. A substantia amount of chained and separate nonwork trips are made by workers,
with a heavy skew toward the afternoon and evening hours.



Figure4
Tripsin progress by time of day
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The previous gatigtics reved the variety of patternsin which travel occurs. But a substantial amount of
activities are completed without travel, and many trade-offs are made al the time between travel-based
and non-trave dternatives. Many people work a home in ways and amounts that dter their travel
patterns. They aso make catalog purchases of dl types, even for their regular grocery shopping, and
use the telephone or computer network to conduct banking or other financid transactions. The point
here isthat activity based models are needed to capture the trade- offs people make between activity
dternatives which involve travel and those which don't.

THE THEORY BEHIND ACTIVITY BASED TRAVEL FORECASTING

Our discussion of the theory underlying activity based travel forecasting starts with the framework in
which activity and travel decisonsare made. Thisisfollowed by an examination of the characterigtics of
activity and travel demand. Findly we examine theories about the way people make choices, with a
focus on methods for dealing with complex decisons.

Activity and Trave Decison Framework
Figure 5 shows how activity and travel scheduling decisions are made in the context of a broader

framework, surrounded by and connected in important ways to other decisions (Ben-Akivaand Lerman
1985; Ben-Akiva, Bowman and Gopinath 1996).



Figure5
Activity and travel decison framework
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Urban development decisions of governments, red etate developers and other firmsinfluence the
opportunities available to households and individuas. Government bodies may provide public
transportation services, and tax and regulate the behavior of individuals and firms. Red edtate
developers provide the locationd opportunities for firm and individud location decisons. Firms
determine the locations of job opportunities through their location and production decisions.
Household and individua choices, including (1) mohility and lifestyle decisons, (2) activity and travel
scheduling, and (3) implementation and rescheduling, fal into distinct time frames of decisonmaking.
Mohbility and lifestyle decisions occur & irregular and infrequent intervas, in atime frame of years.
These include mgjor decisons of household compaosition and roles, workforce participation, workplace,
resdentia location and long term activity commitments. They dso include a set of long term transport
decidgons such as auto ownership, work travel mode, trandt and parking arrangements, commute
program participation, and, potentialy, the acquisition of equipment for automated traveler information
systems.

Activity and travel scheduling is a planning function which occurs a more frequent and regular intervas.

It involves the selection of a particular set of activities and their priorities, the assgnment of the activities
to particular members of the household, the sequencing of the activities, and the sdection of activity
locations, times and methods of required travel. It is convenient to make the smplifying assumption that
the activity and travel scheduling decison addresses a particular time span, such as aweek or aday.
The models we examine later do this, usng a 24 hour day as the decision time span.

Within the day, unplanned implementation and rescheduling decisons occur. These include en-route
decisons of route choice, travel speed, acceleration, lane changing, merging, following disance, and



parking location. Scheduling decisons are made to fill previoudy unscheduled time with unplanned
activities, and rescheduling occurs in response to unexpected events.

Urban devel opment directly influences the decisions of individuas and households, and together the
urban development and individual decisions affect the performance of the transportation syssem. Thisis
manifested in severd ways, induding travel volumes, speeds, congestion and environmenta impact.
These manifestations of transportation system performance smultaneoudy affect the urban devel opment
and individua decisons,

The Characteristics of Activity and Travel Demand

One of the most fundamentd, well known and widely accepted principlesisthat travel demand is
derived from activity demand. This principle is why the decison framework includes travel decisons as
components of abroader activity scheduling decison, and it requires us to modd the demand for
activities. Chapin (1974) theorized that activity demand is motivated by basic human desires, such as
the dediresfor surviva, socid encounters and ego gratification. It isaso moderated by various factors,
including, for example, commitments, capabilities and hedth. Unfortunatdly, it is difficult to modd the
factors underlying activity demand, and little progress has been made to incorporate them in travel
demand models. However, a significant amount of research has been done on how household
membership moderates activity demand. The conclusions are that (1) households influence activity
decisons, (2) the effects differ by household type, Sze, member relationships, ages and genders, and (3)
children, in particular, impose sgnificant demands and congtraints on others in the household.

Hagerstrand (1970) focused attention on congtraints which limit activity options available to individuds.
These include coupling condraints, authority congtraints and cgpability condraints. Coupling congraints
require the presence of another person or some other resource in order to participate in the activity
opportunity. Examplesinclude participation in joint household activities or in an activity which requires
an automobile for access. Authority condraints are indtitutiondly impaosed restrictions, such as office or
store hours, and regulations such as noise redtrictions. Capability congtraints are imposed by nature or
technology limits. One very important example is the nearly universa human limitation which requires us
to return home daily to ahome base for rest and persona maintenance. Another example Hagerstrand
cdled the time-gpace prism; we live in atime-gpace continuum and can only function in different
locations a different points in time by experiencing the time and cost of movement between the
locations.

However, not dl activity requires our physicad movement. Furthermore, the advance of
telecommunications technology makes it possible to participate in more and more kinds of activities
without physicaly moving, by increasing the quantity and qudity of one- and two-way information
exchange which can occur dectronicaly. Thisleadsto choices for individuas between travel and non
trave activity dternatives for work, shopping, conferring and recreation. The modeling implications of
thisare very important. First, models need to represent the time and space congtraints people face.
Second, models aso need to represent the choi ces people make between travel and non-travel



dternatives.

The Choice Process and Complex Decisions

The decision framework, and the factors influencing activity and travel demand give a good picture of
the peculiar nature of activity and travel decisons. Generd theories of how people make choices when
faced with complex decisions are aso important in the development and critique of dternative modeling
approaches.

Every choice has three important dements, including (1) aset of dternatives, (2) a decisonmaker, and
(3) adecison protocol, or set of rules. The sat of dl feasble dternativesis often referred to asthe
universal set, whereas the set of dternatives which the decisonmaker actudly consdersis cdled the
choice set. The dternatives in the choice set are defined to be mutualy exclusive and collectively
exhaudtive, so that the decisonmaker must choose one and only one dternative from the choice set.

The Alternatives. Aswe have dready seen, the activity and travel scheduling decison is very complex
because it involves many dimensions, including activity participation and purpose, priorities, sequence,
timing, location, travel mode and route. Within each dimension the number of aternatives can be very
large, and sometimes infinite. Viewing the decision as a household decision further complicates the set
of dternaives. Thus, in choosng an activity and travel schedule, a decisonmaker faces avery large and
complex set of dternatives.

The Decisionmaker. Furthermore, the decisionmaker possesses limited resources and capabilities for
meaking this complex decison. Information processing limitations prevent us from being aware of al
available dternatives, fully understanding the dternatives we are awvare of, and diginguishing smilar
dterndives. Gathering the information takes time, energy and, often money which are dl in limited
supply. The result isthat decisonmakers act on incomplete information, especiadly when the choice
involves alarge, complex aternative set.

The Decision Protocol. A variety of decison protocols may be employed to make decisons, but dl of
them can be described in terms of atwo-stage process of (1) choice set generation, in which the choice
st is sdected from the universd s&t, and (2) choice, in which one dternative is chosen from the choice
set. The process can be deliberative or reactive (Rich and Knight 1991; as cited in Ettema, Borgers
and Timmermans 1995). In addiberative process dl the dternatives are identified before any are
evauated, and the two stages are conducted sequentialy. In areactive process the evaluation of some
dternatives can lead to the identification of additional dternatives, and the two stages are partidly
completed in an iterative fashion until the choice is findly made.



Figure6
Decision protocols can be viewed as a two stage process of choice set generation,
characterized by a particular search style and rigor, followed by choice, characterized
by aparticular decison rule. The two stages can be conducted sequentidly in
addiberative process, or iteratively in areactive process.
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Choice set generation, which can be thought of as a search for dterndives, is characterized by its style
and rigor. The search style can ether be random, in which no systematic method is employed for
finding dternatives, or structured. The structure of a search can be generic or context specific. For
example, asearch could be structured by an attempt to find aternatives which are smilar to the most
recently found dterndtive. A generic structured search might define“smilar” genericaly, wheressin a
context specific structured search the definition of “similar” may depend on the nature of the most
recently found dternative. An exhaudtive search is one which finds dl the dternatives before findizing
the choice. A non-exhaugtive search stops before dl the dternatives have been identified, with one
result being that the choiceislikely to be suboptimd.

In the choice stage of the decision protocol, the aternatives are judged on one or more criteria, such as
travel cost and travel time, and the choice is made by employing adecision rule which is based on the
criteria. The choice stage is characterized by its decison rule. Decision rules which employ one or
more unranked criteria include inferiority, dominance and satisfaction. An inferiority rule eiminates
dternatives which are inferior to another dterndive in every criterion. A dominance rule sdlects
dternatives which are superior to every other dterndivein every criterion. A satisfaction rule setsa
minimum standard for every criterion and sdlects dternatives which satisfy every minimum standard.
None of the rules which employs multiple unranked criteriais assured of uniquely choosing one and only



one dternative. In contrast, rules which employ ranked criteria can arive a aclearly defined choice. A
lexicographic rule gpplies the dominance rule to the most important criterion. If two or more dternatives
dominate dl other aternatives, but are equa in the most important criterion, the tie is broken by
comparing them on successively lessimportant criteria until only one dominant dternative remains.
Elimination by aspects (Tversky 1972) gpplies the satisfaction rule to the most important criterion,
eiminating dl dternatives which fail to satisfy. The remaining aternatives are judged on successively less
important criteria, diminating those which don't satisfy a each step, until only one dternative remains.

Findly, the decison rule may involve the use of a composte criterion. Here multiple criteriaare
transformed into asingle scalar criterion by means of alinear or nonlinear combination. The dternative
is chosen which best satisfies the composite criterion.

In models of decisons one of the most commonly assumed decision protocolsis a deliberative process
in which an exhaudtive search is followed by a utility maximization choice. The utility function servesasa
compogte criterion. The use of this decison protocol in modds of activity and travel choicesis
frequently criticized because the large dternative set makesit unredigtic to assume an exhaudtive search
followed by the rationd evauation of a utility function for every dterndiive. Severd dternative decison
protocols have been hypothesized to better represent how individuas cope with complex dternative
sets. These include (1)non-exhaustive search, (2) selection based on habit, (3) adaptive decisions,
which adjust prior decisonsin response to changing conditions, (4) satisfaction rules which stop the
search when a satifying dternative is found, and (5) bounded rationa decisons (Smon 1957), in which
a norn-exhaudtive search generates a manageabl e choice s, to which a utility-based decison ruleis

applied.

Summary

We close this section on the theory underlying activity based travel forecasting with alist of the
important points:

» Activity and travel scheduling decisons are made in the context of a broader framework which
includes urban development decisons of governments, developers and firms, the long range moility
and lifestyle decisons and within day implementation and rescheduling decisons of individuds, and
the performance of the trangportation system.
* Important characteristics of activity and travel demand include:
@ travel demand is derived from activity demand,
€ household membership influences individua decisions, and
@ choices are congtrained
by atime-gpace continuum
and by capability, coupling and authority congraints.
»  Choice theory suggests that
€ decisions can be viewed as atwo stage process of choice set generation and choice, and
€ individuas use coping mechanismsin order to make decisons with limited resources when



the dternaive set is as large and complex asthat of the activity and travel scheduling decision.

MODELING APPROACHES

Our examination of theory in the previous section provides the ideas and the concepts for examining the
activity based modeling approaches. In this section we build a framework which can be used to
understand, compare and eva uate specific modeling gpproaches which have been attempted. We start
by asserting that the heart of the modeling problem is combinatorid, and then present alist of
requirements which can be used to judge how well any modding effort solves the problem. We
proceed to characterize the modeling approaches which have been attempted, first in terms of features
shared by dl the gpproaches, and then by a classfication of the ways in which they differ from each
other. Inthefina sections of this presentation we will use this framework to examine Sx important
examples of atempts to incorporate activity based methods into travel forecasting models.

The Fundamental M odeling Problem

The fundamentd problem facing the activity based travel modder is combinatorid. The chdlengeisto
adequately represent a decision process which has infinitely many feasible outcomesin many
dimensons. To show the size of the combinatorid problem, Table 2 ligts the dimensions of the activity
and travel scheduling decision and provides an estimate of the number of dternatives faced by an
individud. Some of the dimengons are continuous, notably timing and location. But if we smplify by
transforming these into discrete categories, we get in the neighborhood of 10" dternatives available to
the individud.

Table2
An estimate of the number of daily activity
schedule dternatives facing an individud

Number of activities per day 10 10
Sequence 10!
Timing 10 per activity 100
Location 1000 per activity 10,000
Mode 5 per activity 50
Route 10 per activity 100
Total 10"

Like the decisonmaker, the modder must smplify. But unlike the decisonmaker, who can smplify any
way he or she pleases, the modder must amplify in away which matches the behavior of the
decisonmaker. We need aset of requirements with which we can measure how well amode system
solves this combinatorid problem



Modd System Requirements

Figure 7 lists the requirements which we expect an activity based travel forecasting modd system to
satisfy. Firg, it should be theoreticaly sound, both behaviordly and mathematicaly. Without these we
can not rely on the results. Second, the scope must be complete enough to make the modd useful. If
important dimengons of the activity scheduling decison are missing, the modd prediction will be
incomplete and of limited use. Enough resolution of the daily schedule dternativesis required to capture
behavior which affects the aggregate phenomenain which we re interested. For example, the resolution
of the time dimension must be fine enough to capture time-of-day shiftsin response to congestion
pricing, and their effects on traffic congestion. The scope of the moddl must endble it to ded with the
relevant policy issues. Third, the resource requirements of the modd must dlow it to be implemented.
In addition to the data we need for estimating the modd parameters, we need to vaidate the model
using adifferent set of data. To use the mode for prediction we must dso be able to generate reliable
forecasts of the exogenous variables used by the modd. The model must dso be smple enough so that
the logic and computation required make it technicaly and financialy feasible to develop, maintain and
operate. Finaly, the modd must produce valid results.

Figure7
System requirements for an activity based
travel forecasting model system

e theoreticdly sound
e behaviordly
e mahemdicdly
e complete scope
e daly schedule
e dimensondity
* resolution
» flexible policy scope
* practical (resource requirements)
e data
* edimation
e vdiddion
e Operation
* logic (software)
e computation (hardware)
e vdidresults

Commonalities Among the Various M odeling Approaches

Let us now consder the characterigtics which are common to most of the activity based modeling



goproaches. Firg, they dl fit into the activity and travel decision framework which we presented in Figure
5, with afocus on the activity and travel decisons. Second, they al represent the decision process as a
two-stage decision protocol of choice set generation, or search, followed sequentidly or iteratively by the
choice itsdf, as shown in Figure 6.

Third, al the models are disaggregate, representing the behavior of asingle decisonmaker. They are
intended to generate predictions with disaggregate data, which requires the generation of a representative
population. The modd is applied to each decisonmaker in the population, yieding for each person ether a
amulated daily trave itinerary or a set of probabilities for the dternaivesin the choice set. Thetripsin the
itinerary can then be aggregated and assigned to the transport network, resulting in a prediction of trangport
system performance. This process may need to be repeated to achieve statisticdly reliable predictions.

Although the modd s require the generation of a disaggregate population, they do not require this to be done
acetanway. Variouswdl understood techniques exist for generating a disaggregeate population, using data
from sources such as the census, household surveys, counts and exogenous forecasts. Examples of these
techniques include iterative proportiond fitting, of which the Fratar method is a specid case, and models of
household evolution which may employ trangtion matrices and choice models.

In summary, the Smilarities of the various modeling gpproaches conss of the decison framework, the two-
stage choice process and the use of disaggregate methods.

Differences Among the Various M odeling Appr oaches

Despite the amilarities, each of the proposed activity based modd systemsis uniquein many ways. We
have classfied the basic differences dong 4 dimensions. Asindicated in the introduction, the mgjor
classfication distinguishes econometric models from hybrid smulation modds. We can dso dassfy each
model system as representing either household decisions or individud decisions, by its operation asa
synthetic mode or a switching mode, and by whether it predicts probabilities or smulates outcomes.

Econometric vs Hybrid Smulation Models. Econometric and hybrid Smulation modds use different
decison protocols. As shown in Figure 8, econometric models represent the choice set generation, or
search, sage very smply, ether assuming the decisonmaker consders dl feasble dternatives, or usng a
smple search rule (heurigtic) which resultsin alarge choice set. Most of the modd is devoted to the
complex representation of a utility-based multi-dimensiona choice. No iteration occurs between search and
choice. Hybrid smulations, on the other hand, focus most of their attention on the choice set generation
stage, employing a complex search heurigtic which yidds avery smdl choice set. A very smple utility or
satisfaction based modd is used to represent the choice from this set. Often the protocol involvesiteration
between search and choice.



Figure8
Econometric and hybrid smulation decision protocols. Econometric models
represent the search smply, and focus attention on the choice. Hybrid
smulations focus on the search, representing the choice smply.
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Another digtinction is that econometric models are systems of equations which predict the probability of
decision outcomes. In the case of discrete outcomes, there is one equation per possible outcome. In
contrast, hybrid smulations are systems of sequentia decison rules which predict decision process
outcomes.

Household vs Individual Decision. The difference between household and individua decison modelsis
graightforward. In an individua model one decison yields one person’'s schedule of activitiesand travel. In
a household model one decision yields many schedules, one for each person in the household.

Synthetic vs Switching Models. A synthetic modd congtructs a person’s activity and travel schedule from
scratch. A switching model, on the other hand, starts with a given schedule and adjustsit in responseto a
change in conditions.

Probability vs Realization. Thisdifferenceis based on how the disaggregate outcomes are predicted.
When the modd is applied to an individuad decisonmaker a probability modd calculates probabilities of
each potential outcome, whereas aredization modd predicts the decison. An econometric model is
naturally a probability mode because it predicts the probabilities of al potentid outcomes, but it can aso be
implemented as aredization modd viaMonte Carlo smulation, in which one of the potentia outcomesis
selected in arandom draw using the predicted probabilities. Hybrid smulation models, in contrast, can only
be implemented as redlization modes.



ECONOMETRIC MODEL SYSTEMS

We have established a framework in which activity based travel forecasting systems can be understood and
compared, by examining the theory of activity based trave, Sating the requirements which the forecasting
systems should satisfy, identifying the important commondities among approaches, and classfying the ways
in which the sysems differ. In the next two sections we look at examples from the two mgor classes,
garting in this section with the econometric mode systems.

Aswe explained dready, econometric mode systems are systems of equiations representing probabilities of
decison outcomes. They are based on the theory of probability and statistics, generate probabilities for al
dternative outcomes, and are usudly based on a utility maximization assumption. Typicdly, these modd
systems rely heavily on multinomid logit and nested logit probability modes.

Econometric model systems achieve the needed smplification by subdividing decision outcomes and
aggregating the dternatives. For example, in the examples which we review, one system subdivides
outcomes by modeling decisions about trips instead of the entire daily schedule. All the examples aggregate
activity locations into geographic zones.

Developers of econometric mode systems attermpt to retain behaviord redlism by integrating the component
models of the system. One method of integration modes some dimensions of the scheduling decision
conditiona upon the outcomes of other dimensons. For example, the choice of travel mode for the work
commute is conditioned by the choice of workplace. The second mgjor method of integration accompanies
this conditiondity, and involves the use of measures of expected utility. It is used when the utility of a
conditiona choice influences the utility of a conditioning choice. In the previous example, the choice of
workplace is influenced by the expected utility of travel arisng from dl the available commute modes,

Within the class of econometric model systems we have identified three subclasses, based on how they
divide the decison outcomes. The smplest and oldest subclass divides the daily scheduleinto trips. Some
more recent models combine trips explicitly in tours. The last subclass combines the toursin adaily
schedule. In Figure 9 we compare the three subclasses by seeing how they represent ahypothetica daily
schedule. In this schedule the person departed for work a 7:30 A.M., traveling by transt. At noon they
walked out for persona business, returning to work at 12:50 P.M. At 4:40 P. M. they returned home from
work, again by trangt. That evening at 7:00 P.M. they drove to another location for shopping, returning
home at 10:00 P.M. The trip-based mode represents the schedule as 6 one-way trips. The “direction” of
the tripsisin terms of trip production and attraction rather than direction of movement. Timeisnot modeled
explicitly. In the tour-based mode the trips are explicitly connected in tours, introducing spatiad congtraints
and direction of movement. Findly, the daily schedule modd explicitly links the tours and explicitly models
the time dimension, dthough at a coarse resolution. We will look at an example of each of these
econometric approaches.



Figure9
The three subclasses of econometric modd systems are characterized by
how they subdivide the daily schedule outcome. Trip-based models
subdivide the schedule into one-way trips. Tour-based models separate
the schedule into tours. Daily schedule models explicitly link the tours.
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Trip-Based System

The first example of an integrated trip-based econometric modd system was developed during the mid
1970'sfor the MTC in San Francisco (Ruiter and Ben-Akiva 1978). The demand modd portion of the
MTC system has three mgor components, as shown in Figure 10(a). The mobility and lifestyle component
represents long term decisions related to auto ownership and home-based work trips. Short term activity
and travel decisons deal with other home based trips and non-home based trips. Each model component is
conditioned by choices at the higher level, and the activity and travel modds influence the mohility and
lifestyle modds via measures of expected utility. Figure 10(b) shows details of the mobility and lifestyle
component of the model system. At thislevel we can see that the system isin the class of household models
because it explicitly models work travel decisons for two workersin the household. Arrowsin thefigure
show how the modds are integrated, with solid arrows indicating conditionality and dashed arrows
indicating expected utility. For example, the number of autos chosen in the auto ownership modd is
conditioned by the choice of workplace. That is, the model assumes the workplace is known when it
models the auto ownership decison. The auto ownership decison itsdf conditions the mode choice modd.
The mode aso accounts for how auto ownership is influenced by the ease of travel for shopping and work
by including variables of expected utility generated by the shopping destination and mode choice and work



mode choice moddls.

Figure 10
(8 Three mgor components of the MTC mode system, and (b) details of the
mobility and lifestyle component, showing integration of the modesvia
conditiondity (solid arrows) and expected utility (dashed arrows).
(Source: Ruiter and Ben-Akiva 1978)

Mobility and Lifestyle Mobility and Lifestyle

Primary worker Secondary worker
--Auto ownership
--Home based work trips work tri work tri
p p
frequency frequency

| [ ] ]

Activity and Travel

work place |« work place
l LY
I
auto ownership

! T

Home Based Other trips

¥

F————————— |

Non-Home Based Trips mode I mode
shop trip
(a) ---1 destination and (b)
mode

In summary, key features of the trip-based model systems, exemplified by the MTC system, are their
compoasition of disaggregate choice models and their integration via conditionality and measures of expected
utility according to the decison framework. Their key weaknessis the sequentia modeling of home-based
and non-home based trips rather than the explicit representation of tours. The consequenceisthat the
models may not correctly predict scheduling changes which can occur in response to changing conditions.

Tour-Based System

Tour-based systems were first developed in the late 1970's and 80's in the Netherlands (Gunn, van der
Hoorn and Day 1987; Daly, van Zwam and van der Vak 1983; Hague Consulting Group 1992), and are
being used extensively there and dsawhere in Europe, with the most recent systems being developed in
Stockholm, Sweden (Algers et. al. 1995) and Sdlerno, Italy (Cascetta, Nuzzolo and Vedardi 1993). Figure
11, which depicts the basic structure of the Stockholm model system, shows how the tours for various
purposes are explicitly modeled. Work tour decisions are conditioned by the mobility and lifestyle
decisons, and condition dl other activity and travel decisons. The modd system makes heavy use of
expected utility measures, strengthening the connections across dimensions of the activity and travel
scheduling decison.



Figure 11
The Stockholm tour-based moddl system
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The work tour decision, Figure 12, is modeled as anested logit model. 1t includes the household's decision
of who will work today, how the household' s autos will be alocated among the workers, and the mode of
travel for workers who do not use a household auto.

Figure 12
The nested logit work tour model

Work

Auto
Allocation

Mode

The modd of household shopping tours, Figure 13, conditioned by the work decision, determines how
many shopping activities the household will undertake, who will do them, the type of tour on which they will
be done, and the mode and destination of the tour. A shopping activity can be assigned to one or more
household members, and if it is assgned to aworker, the options exist of conducting the activity on a home-
based tour, awork-based tour or chained to the work tour en route between work and home.



Figure 13
The shopping tours model (a) assigns each shopping activity to one or
more household members (b). If a shopping activity is assigned to aworker,
the tour type model determines whether the activity occurs on a home-based
tour, awork-based tour, or chained in the work tour (C).
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Summarizing the tour-based econometric approach, the key feature is the explicit representation of tours,
and trip chaining within tours. The Stockholm example dso explicitly models household decisons. The key
weaknesses of the tour-based systems are that they lack an overarching pattern connecting the day’ s tours,
and they don't integrate the time dimension into the modd structure.

Tour-based systems, exemplified by the Stockholm mode system, represent the most advanced state of the
practice of activity based trave forecasting. These systems have been carefully vaidated and are being
widdly applied in Europe. In contragt, the remaining four examples which we will review next, including the
daily schedule econometric system and dl the hybrid smulations, exist only as prototypes or partidly
implemented systems.

Daily Schedule System

The dally schedule system (Ben-Akivaet. al. 1996; Ben- Akiva and Bowman 1995; Bowman 1995) deds
directly with the two weaknesses of the tour-based modds. Firdt, it explicitly represents the choice of a
dally activity pattern, which overarches and ties together tour decisions (Figure 14). Second, it incorporates
the time of day decison. Thedally activity pettern is characterized as amultidimensiond choice of primary
activity, primary tour type, and the number and purpose of secondary tours. The modd distinguishes
between the primary tour of the day and secondary tours. For each tour, it models destinations, times of
day and modes.



Figure 14
(& The dally schedule system congsts of adaily activity pettern
which overarches and ties together the tour decisons. (b) The daily activity
pattern and (c) the tour decisions are multidimensiona choices.
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The model isimplemented as anested logit system, with tour decisions conditioned by the choice of daily
activity pattern (Figure 15). They dso influence the choice of daily activity pattern through the expected
utility mechanism described earlier for the trip and tour-based systems. In the prototype, the daily activity
pattern mode is a choice among 55 patternsincluding (1) whether to stay home dl day or participate in
activitiesinvolving travel, and (2) conditional on trave, the choice of a particular pattern. The Bogton travel
survey, used for the prototype, did not include records of at-home activities. If such data were available, it
could be incorporated at thislevel of themodd. The modd system design cdls for the explicit modding of
secondary destinations on tours, conditiond on the choices for the primary degtination.



Figure 15

Dally schedule system prototype
(a) Dalily activity schedule (b) Daily activity pattern
Daily Activity
Pattern
Home Travel

Primary Tour 55 Patterns

timing, destination 1 home

and mode 30 work
12 school

12 other

Secondary Tour
timing, destination
and mode

The key feature of this system, the integrated daily schedule, is dso the source of one of itstwo main
weskneses. Tying tours together in the daily activity pattern resultsin avery large choice set which is
behaviordly unredigtic and computationally burdensome. Condraints, utilities and probabilities must be
computed for literdly billions of dternatives. Ironicdly, the prototype nevertheless suffers from an
incomplete representation of the daily schedule; the time of day is aggregated into only 4 time periods,
secondary stops on tours are omitted, the time of day linkages are incomplete and household linkages are
not explicitly modeed.

HYBRID SIMULATIONS

We have dready described hybrid smulations as sequentia decison rules predicting decison process
outcomes, and noted their focus of attention on choice set generation. These systems are based on various
decision theories, such as cognitive limitation or the notion of a search which terminates with acceptance of a
satidying dternative. A smple utility based decison rule is often used in the choice stage of the decison
protocol. Hybrid smulations achieve smplification by subdividing the decison process into separate
sequentia steps. Additiondly, dl hybrid smulations developed to date achieve smplification by limiting the
decison scope, omitting important dimensions of the activity and travel scheduling decision.

A great variety of hybrid smulationsis possble, and they are harder to subclassfy than the econometric
systems. We review three particular modd systems which, athough they do not characterize the entire class
of hybrid smulations, are important examples and demondtrate some of itsvariety. The STARCHILD
system (Recker, McNally and Root 1986b; 19864) is the earliest example of this class, which moddsthe
activity and travel scheduling decision as a classification and choice process. AMOS (RDC Inc. 1995) isa
very recent example which has been partidly implemented in the Washington, D.C. ares, representing the
decison as asatisficing adjustment. SMASH (Ettema, Borgers and Timmermans 1993; Ettema et. al.

1995) was devel oped in the Netherlands, and represents the scheduling decision as a sequence of schedule
building decisons.



STARCHILD: Classfication and Choice

STARCHILD (Figure 16) starts with a detailed activity program which must be supplied from outside the
mode. The activity program identifies many details of the schedule, including activity purpose, participation,
duration and location, aswell as congraints on sequence, timing and coupling of activities. It then modds
the scheduling decison as afour step process which yields the timing and sequence of the activitiesin the
program. Choice set generation occursin the first two steps. Feasible dternatives are exhaudtively
enumerated with careful attention to condraints. They are then classfied, usng agatistical smilarity
measure, and one dternative is chosen to represent each of gpproximately 3-10 classes. The remaining two
steps comprise the choice process. A decison rule is used to diminate some dternatives. In the prototype
which was developed, dl inferior dternatives were eiminated, according to an intuitive objective criterion.

A multinomid logit mode then represents a utility maximizing choice among the remaining non-inferior
dternatives. The developers of STARCHILD concelved the activity schedule as a plan, which is followed
by implementation and rescheduling, but did not develop the latter model.

Figure 16
STARCHILD takes an externdly supplied activity program
and smulates the scheduling decison. Choice set generation
involves enumerating, classfying and sampling the schedule dternatives.
Thisisfollowed by asmple utility maximization choice.
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STARCHILD’ s key features are its detalled representation of congtraints in the identification of feasible
dternatives, and the use of a classfication method to generate the choice set. Asamodd intended for use



in forecasting trave, it has two key weaknesses. Fird, it reies on externa sources to predict important
dimensions of the activity and travel schedule, including activity participation, purpose, location and travel
mode. Second, the classfication and sampling rule may inadequately represent the true choice set. Therule
generates avery smal choice set with only one dternative of each digtinctively different class, whereas
people may frequently choose from asmall choice st of smilar competing dterndtives.

AMOS. Satifficing Adjustment

AMOS (Figure 17) requires as input an even more detailed activity schedule than STARCHILD. This,
however, is because AMOS is designed as a switching model. Given a basdline schedule and a policy
change, it chooses a basic response, such as amode change, which limits the domain of search for afeasible
adjustment. A structured search rule then completes the choice set generation stage, yielding one feasble
adjusment. A smple choice modd accepts or regjects the adjustment. If the adjustment is rejected then the
structured search is repeated until an acceptable adjustment has been found. If no acceptable dternativeis
found for the desired basic response, then the process can loop back to the choice of another basic
response.

Figure 17
AMOS takes a detailed schedule and searches for an acceptabl e adjustment
to aspecific policy change. The processinvolves the sdlection of abasic policy
response which narrows the domain of search. Thisisfollowed by the search
for one feasble adjustment and the decision to accept the adjustment or continue the search.
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The basic response modd is policy specific. Six palicies are included in the prototype for Washington, DC.:

Workplace parking surcharge

Improved bicycle and pedestrian facilities

Combination of 1 and 2

Workplace parking surcharge with employer- supplied commuter voucher
Peak period driver charge

Combination of 4 and 5

oSk wpnE

The basic response is modeled as amultinomid choice from a set of eight dternatives:

No change

Change departure time to work
Switch to trangt

Switch to car/vanpoal

Switch to bicycle

Switch to wak

Work a home

Other
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The prototype implements the multinomia choice modd via the combination of a neurd network and a
multinomid logit model (MNL). The neurd network predicts an output signd for each dternative, whichis
ascdar function of 36 decisionmaker characteristics under the policy change. The MNL convertsthe
output signdsto probabilities by using the output Sgnd as the only explanatory variable in the utility function.
The parameters of the basic response modd are estimated from data supplied by a policy specific stated
preference survey.

Given a basic response, a context specific search rule is used to find a feasible schedule adjusment. Figure
18 shows a portion of the prototype’ s search rule for abasic reponse of mode change from single
occupant vehicleto trangt. The rule checksfirg for the presence in the basdine schedule of stops on the
way to work. If it finds some, it assumesthey can't be chained in the new transt commute, and switches
them into a home-based tour before work. Then it checksto seeif the revised schedule dlows for timely
ariva a work. The rule continues like this to make schedule adjustments and feasibility checks, eventudly
ariving & afeasble dternative. Each time a schedule adjustment is needed, the adjustment is made viaan
intuitive decison rule or asmple choice modd. The entire rule dlows, in order of priority, changesto
sequence and at-home stops, mode, and timing.



Figure 18
A portion of AMOS's context specific search for afeasble
schedule adjustment, given the basic policy response of amode
change from single occupant vehicle to trangt. (Source: RDC Inc. 1995)
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In summary, AMOS hastwo key features. Fird, it isapolicy specific switching modd. Becauseitis
anchored in a basdine schedule and predicts switches based on policy specific survey data, it has great
potentia to be very informative in predicting short term responses to specific policy changes. The second
key featureis the three step decision protocol of basic response, structured search and satisfaction-based
decison.

AMOS has afew weaknesses linked to itsdesign.  Firdt, it requires custom development for each palicy.
Second, vaidation is needed for each specific policy response model, and the availability of reveded
preference data for this vdidation is very unlikely. Third, it doesn’t forecast long run effects. Fourth, it
requires the exogenous forecast of a basdline schedule for each application of the modd. Fifth, the basic
response and search models may inadequately represent the search process; the structured search sequence
may not match the way some people search, and may systemeticaly bias the predicted outcomes. Beyond
these five design-related weaknesses, the prototype implementation of AMOS suffers from an incomplete
scope; it is unable to predict changes in non-work schedules, or changes in activity participation, purpose,
duration or loceation.



SMASH: Sequential Schedule Building

SMASH (Figure 19) starts with a detailed activity program similar to that required by STARCHILD.
Through an iterative processit gradudly builds a schedule using activities from the program. In each
iteration it garts with a schedule (a blank schedule in the firgt iteration) and conducts a generic nor+
exhaudtive search, enumerating al schedule adjusments which would insert, delete or subgtitute one activity
from the agenda. 1t then chooses one of the potentid adjustments from the choice set and continues the
search, or accepts the previous schedule and ends the search. Conceptualy, the model could be used asa
rescheduler, being rerun after the conduct of each activity, but the prototype was not implemented in this

way.

Figure 19
SMASH garts with a detalled activity program and an empty schedule. Then it builds the schedule by
adding, deleting or subgtituting one program activity a& atime. A decison is made each time whether or not
to accept the current schedule and stop the building process.
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The choice between schedule adjustment and schedule acceptance is implemented as a nested logit modd.
Schedule acceptance occurs when the utility of the schedule acceptance dterndtive is greater than thet of all
the schedule adjustments under consideration in theiteration. A scheduleis more likely to be accepted if it
has alot of scheduled activity time, little travel time, includes the high priority activities from the program and
lacks schedule conflicts.

The key feature of SMASH is the schedule construction process with a cost- benefit based stopping
criterion. SMASH has three mgjor weaknesses. Firg, it relies on an externaly supplied detailed activity
program which includes severd important dimensions of the activity schedule, including desired



participation, purpose, duration, location and mode of travel. Second, it requires avery complex survey for
model estimation. Respondents must step through the entire schedule building process. Finaly, the non
exhaudtive search heuristic may be inadequate, and needs to be vaidated. Its method of restricting the
search domain may systematically exclude dternatives which people frequently choose.

COMPARISONS OF THE EXAMPLES

We close this presentation with a summary comparison of the Sx example mode systems which were
examined in the two previous sections. In this comparison we look first at the mgjor differences. Then we
look at the three mgor categories in which the system requirements were presented, comparing the models
theoretica weaknesses, the scope of the systems and their susceptibility to practical problems.

Table 3 summarizes the mgor differences among the modd systemsin terms of the categories of differences
we identified earlier. We see the two mgjor classes of modd systems. The econometric models are
systems of equations predicting probabilities of outcomes, whereas the hybrid smulations are systems of
sequentid rules predicting decision process outcomes. The econometric models can be implemented as
either probability or redization models, because they assign a probability to each modeled outcome, and the
hybrid smulations are al implemented as redlization modes, smulating the choice of a sngle outcome for
each individua in the representative population. The trip and tour-based econometric models are household
modds, while the daily schedule mode and dl the hybrid smulations sacrifice the household framework in
implementing a representation of an entire day’s schedule. AMOS is the only model system designed and
implemented as a switching modd.

Table3
Mg or differences among the 6 example systems

Probability Household Switch
VS VS VS
SubClass Redizaion Individua Synthetic
Econometric Models
MTC Trip PorS H Synthetic
Stockholm Tour PorS H Synthetic
Ben-Akiva & Bowman Daly Schedule PorS I Synthetic

Hybrid Smulations



STARCHILD Classify S | Synthetic

AMOS Satidficng S I Switch
Adjustment
SMASH Schedule S Synthetic
Building

Table 4 ligs the mgjor theoretica weaknesses of each of the 6 systems. The primary weakness of the trip-
based MTC system and the tour-based Stockholm system isthet they fail to integrate the trips or toursin a
complete daily activity schedule. The daily schedule of the Ben-Akiva and Bowman mode overcomes this
weskness but is |eft with a utility-based decision protocol with an unredigticaly large choice set. Each of
the hybrid smulations can be challenged as to the vadidity of its decision protocol. I1n each case, specific
assumptions about how the decisionmaker goes about the search and decision are structured into the
smulation. These assumptions may be wrong in enough cases to invaidate the modd’ s parameter estimates
and predictions.

Table4
Theoretical weaknesses of the 6 example systems

Econometric M odds

MTC Does not explicitly modd tours or integrated time of day

Stockholm Does nat link toursin adaily activity pattern, or integrate the time dimension

Ben-Akiva& Large choice st is behaviordly unredistic

Bowman

Hybrid Smulations

STARCHILD Sample of dternatives may inadequately represent choice set

AMOS Basic response and search may inadequately represent the search process

SMASH Non-exhaudtive search heuristic may not include dternatives persons would
choose

Table 5 identifies the mgor and minor scope wesknesses of the model systems. Thetrip-based MTC
system and tour-based Stockholm system do not integrate task sequence and timing into the daily schedule
decison. The design of the Ben- Akiva and Bowman model clearly incorporates the sequence and timing
dimengons, dthough the prototype implementation did not fully achieve thisintegration. More importantly,
the representation of timeis in very coarse discrete categories, limiting its representation in thetime
dimengon. All three of the hybrid Smulations are missing critical dimensions of the decison. Not only
would these dimensions be difficult to predict externaly to the mode system, but they are dso integra
components of the scheduling decision, made interdependently with the modeled dimensions. Findly, the
policy specific nature of AMOS, with its requirement of custom development for every palicy, limitsits



ability to flexibly handle a complete range of policy issues.

Table 5
Modd system scope. An X indicates amgor weakness and an x indicates a minor weakness

Econometric Models Hybrid Smulations
BenrAkiva& STAR

Sysem Requirement MTC Sockholm Bowman CHILD AMOS SMASH
Schedule dimendons
Activity participation X X
Purpose X X X
Seguence X X X
Timing X X X
Location X X X
Mode of travel X X X
Resolution X
Policy scope X

Our find comparison is of the modd systems susceptibility to practica problems, summarized in Table 6.
The trip-based and tour-based models have overcome the major practical problems, as proven by their
implementation in comprehensive operationd travel forecagting systems. An operationd implementation of
the Ben- Akiva and Bowman modd will face challenges associated with the large daily schedule choice s&t;
the size of the software development effort and the computationd requirements grow subgtantialy with the
choice set sze. STARCHILD and AMOS, with structured, context specific search rules, make
development and maintenance of software to represent the search process a particularly daunting task.
AMOS s design as a policy-gpecific switching modd make the provison of modd validation deta from
before and after the policy implementation virtudly impossible, and SMASH' s requirement of schedule
congtruction data for modd estimation is also problemétic.

Table6
Practica problems of the model systems

Econometric Models Hybrid Smulations

Ben-Akiva& STAR
System Requirement MTC Stockholm  Bowman CHILD AMOS SMASH




Data
estimation X
vaidation X
prediction
Logic (software) X X
Computation (hardware) X

X X

SUMMARY

We dtarted this presentation by asserting that the motivation for activity based travel forecasting is that
aggregate phenomena of concern to governments are rooted in the activity based travel decisions of
individuds.

We then examined the theory underlying activity based travel forecasting methods. The decison framework
of activity and travel scheduling decisions includes urban development decisons of governments, developers
and firms; the long range mobility and lifestyle decisons and within day implementation and rescheduling
decisons of individuas, and the performance of the trangportation system. Important characteristics of
activity and travel demand include the notions that travel demand is derived from activity demand; household
membership influences individua decisions, and cgpability, coupling and authority congtraints, including our
exigence in atime-gpace continuum, limit our activity and travel choices. Choice theory identifies a variety
of decison protocols, dl of which fit in atwo stage process of choice set generation and choice. Findly,
individuas use coping mechanismsin order to make decisons with limited resources when the dternative set
isaslarge and complex asthat of the activity and travel scheduling decision.

We identified the basic characterigtics of the various modeling approaches. We first noted the combinatoria
nature of the modeling problem and listed the requirements of theoretical soundness, scope and practicdity
which the systems must satisfy. The commondities among the modeling approaches include the decison
framework, the two-stage choice process and the use of disaggregate methods. We classified the
differences among the gpproaches adong 4 dimensons. The mgor classification ditinguishes econometric
models from hybrid smulation models. Each mode system can dso be classified as representing either
household decisons or individua decisions, by its operation as a synthetic mode or a switching model, and
by whether it predicts probabilities or smulates outcomes.

We described 6 important examples of attempts to incorporate activity based methods into travel
forecasting modds,, including 3 econometric modd systems and 3 hybrid smulations. The econometric
modd systems are systems of equiations predicting probabilities of decison outcomes. They focus their
attention on the choice stage of the decison protocol. These systems achieve the needed smplification of
the combinatorid problem by aggregating dternatives and subdividing the decision outcomes. In order of
amplicity, the three examples incude atrip-based system, a tour-based system, and a system which
represents an individud’ s entire daily schedule. The first two examples are theoretically inferior because
they fail to integrate the sequence and timing of activity and travel decisions, and important associated



condraints. However, they are the only two examples which have been implemented and validated
operationdly. The daily schedule system integrates the sequence and timing decisonsin the daily schedule,
but introduces complexity which has not yet been implemented and vaidated operationdly.

Hybrid smulations are systems of sequentia decision rules predicting decision process outcomes. Based on
theories which emphasize human inahility to rationdly congder dl the dternativesin complex decison
gtuations, these systems focus attention on choice set generation. They achieve smplification by assuming a
specific search method and subdividing the decision process into separate sequential steps. The firgt
example assumes a classfication method of choice set generation, the second assumes a particular
structured search for a satisfying schedule adjustment, and the third assumes a sequentia schedule building
process. Additiondly, dl hybrid smulations developed to date achieve smplification by omitting important
dimensions of the activity and travel scheduling decison. The hybrid Smulations have very chdlenging deta
requirements for model estimation, application and vaidation, and the assumptions they make about the
search process have not been validated.

POSTSCRIPT
We briefly consder three questions of interest which our presentation did not attempt to address.

Which activity based modeling approach is best? Our god in this presentation was to establish a
framework in which the different approaches can be understood and eval uated, and to begin that
comparaive evauation. However, we intentionaly stopped short of selecting a best gpproach. Indeed, this
would be premature, because the most progressive approaches exist only as prototypes and have not been
vdidated.

What are the future prospects of activity based travel forecasting? The need for better forecasts, thar
basisin activity theory, and the advance of computing technology al strongly favor the development and use
of activity based travel forecasting systems. On the other hand, development costs and risks, and in some
cases data requirements, are substantid. They present mgjor roadblocks which will be difficult to overcome
in an environment where planning is underfunded and compliance is more important than quality.

What about TRANSIMS? We haven't reviewed TRANSIMS (Barrett et. al. 1995) because it doesn’t yet
address most of the activity and travel scheduling decisons. Figure 20 shows TRANSIMS in the context of
the activity and travel decision framework we have used in this presentation. The vast mgority of
TRANSIMS effort so far has been in the Implementation and Rescheduling box, with the development of a
detalled traffic microamulation. A route planner, which encompasses the mode and route choices of the
activity and travel scheduling box, supplies the smulation with itsinput. Except for the mode choice, which
it handles, the route planner requires detailed schedule input nearly equivadent to the outputs of the activity
based systems we have reviewed. The scheduling approach has not been specified in TRANSIMS.



Figure 20
TRANSIMS development has focused on a traffic microsimulation which addresses
travel rerouting decisons and the performance of the transportation system.
A route planner takes activity schedule information from an as yet undefined activity
scheduler, adds mode and route choice information, and supplies it to the microsmulation.
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